perm filename HAYES.LE2[LET,JMC]1 blob sn#295933 filedate 1977-07-22 generic text, type C, neo UTF8
COMMENT ⊗   VALID 00002 PAGES
C REC  PAGE   DESCRIPTION
C00001 00001
C00002 00002	.require "let.pub" source
C00008 ENDMK
C⊗;
.require "let.pub" source
.at "Goedel" ⊂"G%C:%*odel"⊃
.font E "math30"
.at "qw" ⊂"%ET%*"⊃
∂AIL Dr. Patrick Hayes↓Department of Computer Science
↓University of Essex↓P.O. Box 23↓Wivenhoe Park↓Colchester↓England CO4 3SQ∞
Dear Pat:

	Thanks for your long letter.

	First, as you will see minimal inference is unrelated to optimal
fixed points.  I am rather skeptical about optimal fixed points, because
the optimal fixed point depends on the algebraic structure of the
computation space.  Thus extending the space from the integers to Gaussian
integers or %2R(%E\%12)
can change the optimal fixed point, and
therefore it is hard to see that the optimal fixed point represents
any kind of computational process.

	I can't just write down the functional equation
of %2occur%1 as an ordinary predicate, because I want to be able
to go from a recursive definition to its representation in
first order logic without having to prove anything
first.  I intend to do the proving
after getting into first order logic.  Therefore, whatever I can do
with %2occur%1, I must also be able to do with

	%Bsillier x ← ¬ sillier x%1,

but allowing

	%B∀x.(sillier x ≡ ¬sillier x)%1

is disastrous, because from it I can prove anything, i.e. the functional
equation has no interpretations at all.  However,

	%B∀x.(silliera x = not silliera x)%1

is entirely harmless.  Since we limit ourselves to continuous functionals,
solutions always exist.  By the way, you may be interested in
the enclosed note on strange continuous functionals.
.xgenlines←xgenlines-2

	You are right about↓KckCQS←\@DdXAC9HA∩Aα3'c↔ β'Qβ≤¬rπ&≡BεOD
f␈8Q,6␈↔,↑7ε}lN2π&tλW∂.≡M⊗}rε⊗2ε∂D∞FF*=w∨"
|bπ⊗↑λ	,≡~;Yd∞~→(m|[=-L#"P~~0z⊂1→stw9H∩Y
{IXW⊂⊂∪|P22\qy4x≥4ww≠x2y0]7y⊂4\P77jλ2|0q]68FE∀8¬ss@∃YXOf0A∩AOUKgfX↓EchA$AISI8OhAS9mK]hαβ'Q9ααSπK≤[%β?∩βO?7.∪?∪eπ+OπLhS?;∃εFF∂D
ε∂~⊂ε≡}nh	-n~;sL≥λ≥X-N9(⊂≠Z2w⊂4he deqired %2x∀bAI←∃g\OH4∃KqSMhA←D↓Sg\OPAk@;Lε↔.*d∧∧O"
≡6r⎇λ_$
:;Z-]>X=
≥{H⊂↔\2y0z≠y⊂0w→⊂1pwβE0v 7ays be el@%[S@;∂#↔⊃β4ε&}j⊂λ∞≤;]→-ly(⊂.D≥~→${xu∧
yH∪,≥z;YaQ]~→$∞y;]]Xy(
MyYy.%Hλ∃
(→P,>	β"LN9+λ≡h∩(∞ptr, to Go`IJαaβπl@λ	=→90↔→V⊂:4_z⊂92Xzy9`)ve~∃α3W;∂&K?;M∧∧6∞r,Rπ⊗↑L↑y;]\λ≠[me<Y0⊃]y9t{→v8	 @%`
β'v#↔π⊃π≠WKC⊗KO'≠8p4*' β'Mβv{S↔←|ε'&G∀λ

=λ∪	~tλ≤↑Y:5∞P9z0]4s3@ thes@∀AeKgβ+3SMεk?K∀hS∂?7ε∂S3Jβπ;⊃∧∧6}v>,W&.β≡+∧9Y⊂≥44yP_x82p\αs also to be Qa`↔∃∧¬v $≥~→!Q\}0→]2vyP∀⊗⊂(@, afd↓$A←L↓)Cegα[%1αnsOS??≠ ≡J≥f"¬-|&Nw=ybα*XLL8z9\8[⊂∩CE*42[y4riIXW⊂⊂∃42y2H;tv, be mmre @=\AiQ%bASf↓iQJA9KqhAYKegSα{9β?2βS#'α1PGε≡λ	.$≥z~,=λ∩(∞⎇;≠λ∞<8π2≡wzWεBεA∧dH:44w~β @↔←β;π3O↑Iβ#π~β¬β∨|¬v"ε≤LV
ε≥`λ

<h⊃M≡\⎇⊂≠y22iλ67stXFE8 2ogramming0AEkhαα%βπhβ;?QπK↔Qβ∨+K∃β>CπQβ&C∃β'&+¬β'~β∨?? β≠?Iph"%βF[∃βλ∧πε∂↑"ε7-⎇R∧↑]~FB∧=L↔⊗Z∞⎇εN≡∧∞6..↑4π&z
\⊗↑
∞8	-ny+@∧
z_=↓QR(→l≡~→<D\[{$∞~_=∧∞_<⊂∩\⊂4yP≥40z Kowalski's idea may permit a
smoo@QPAae=G@↔O~β?2|Vv/,≡FNvt∩ππ-|w⊗∞Tλg⊗}T∩ε6α<\nD≠|Y↑H→→.<|Z<∞M;{C!-βs⊂*~2P7q~2qz≥7P12H1wvx≥z2r⊂_<P92\40q`)ng non-compqtable constructions
a step at a time.

	I am now ethus@%CgiSACE←UhAiQ∀ASIK∧XAkgα+⊃β'pβS#∃πβπC↔⊂¬@hV|dεNn,\F&Nltπ&G,\Ro6≥NV."
Mv>N4
⊗rε=L↔∂≡≤<⊗bεM|vN~≡Bπ&Tε≡␈>APV}d∩π≡↑↔⊗∂LTε&}\≥⊗rε|dπ'↔↑Mαo6≥NV/~≥f"ε≥mw&F↑ π≡∂D
v2εM|vN≡≥APV≡⎇mf.∨M≡f/~d∧∧↔J∞↔NNltπ&F≡4π≡n≥MBππ-≤6*b	∀ε≡∞d∞6∂J↑f/↔≡MεNvqQ$Jπ|≥g"b∞Mε*π<]V∞wM≤7~ε≡4ε≡f\≡"bε≥lBπ&Tππ⊗⎇|g
π<\VjπMtε⊗*∞>G⊗∞≤⎇π&6}.v∂⊗EaPU>]bπN}Tπ⊗.≤Dπ&FT∧S⊗≡⎇l6/πN4S
π≡ε/∩D∂⊗␈*∞⎇⊗fb∞8V*πM↔"∧∀⊗g≡t∞W≡(Q,⊗rε←∞G⊗
∞8W"ε|dε≡}mlV∨&≡lW~αT
FFO4∞FNnTf␈∩=vn⊗≥m⊗v:∞
&␈ε}=↔&N⎇n2ph*Mε/⊗T
↔~π≤↑Bε∞m}FF/$∞6/"∞↑6."
≥bεo∀∞6zεl≡"π.n}&O'L]bπ>}-2ε}aQ&/GL]g≡N⎇l⊗bεm}&o~d∧∧Nv=≤F.wL≥FgJD	∩ε∞TG.⊗≥}W~ε≤-w/"=w⊗v↑ λ∞≡;⎇→.1"\≤L\Y<\M≥Yh≠n,~;X./(≤=-}→<h∞⎇=~λ←≤≠~,==λ≥.<(≠yD∧,\⎇,.⎇	,$∞z→;AQ]X<M≤8[→.∀_<Y$∞≠h_LT~;ZL\⎇→9¬a"C"A→(≠≠m⎇h→[n.x<Y∧∞≠h≡-}<H∀L\8⎇~-⎇\h≥
t≥~→$
⎇~→.$≤_<↑\kC!!"K\L\c"@